Current Sierra Nevada-North America motion from very long baseline interferometry:Implications for the kinematics of the western United States

Geology ◽  
1991 ◽  
Vol 19 (11) ◽  
pp. 1085 ◽  
Author(s):  
Donald F. Argus ◽  
Richard G. Gordon
2018 ◽  
Vol 93 (2) ◽  
pp. 278-290
Author(s):  
J. Mark Erickson

AbstractIn midcontinent North America, the Fox Hills Formation (Upper Cretaceous, upper Maastrichtian) preserves the last marine faunas in the central Western Interior Seaway (WIS).Neritoptyx hogansoninew species, a small littoral snail, exhibited allometric change from smooth to corded ornament and rounded to shouldered shape during growth. Specimens preserve a zig-zag pigment pattern that changes to an axial pattern during growth.Neritoptyx hogansoninew species was preyed on by decapod crustaceans, and spent shells were occupied by pagurid crabs. Dead mollusk shells, particularly those ofCrassostrea subtrigonalis(Evans and Shumard, 1857), provided a hard substrate to which they adhered on the Fox Hills tidal flats. This new neritimorph gastropod establishes a paleogeographic and chronostratigraphic proxy for intertidal conditions on the Dakota Isthmus during the late Maastrichtian. Presence of a neritid extends the marine tropical/temperate boundary in the WIS northward to ~44° late Maastrichtian paleolatitude. Late Maastrichtian closure of the isthmus subsequently altered marine heat transfer by interrupting northward flow of tropical currents from the Gulf Coast by as much as 1 to 1.5 million years before the Cretaceous ended.UUID:http://zoobank.org/3ba56c07-fcca-4925-a2f0-df663fc3a06b


2018 ◽  
Vol 31 (24) ◽  
pp. 9921-9940 ◽  
Author(s):  
N. Goldenson ◽  
L. R. Leung ◽  
C. M. Bitz ◽  
E. Blanchard-Wrigglesworth

In the coastal mountains of western North America, most extreme precipitation is associated with atmospheric rivers (ARs), narrow bands of moisture originating in the tropics. Here we quantify how interannual variability in atmospheric rivers influences snowpack in the western United States in observations and a model. We simulate the historical climate with the Model for Prediction Across Scales (MPAS) with physics from the Community Atmosphere Model, version 5 [CAM5 (MPAS-CAM5)], using prescribed sea surface temperatures. In the global variable-resolution domain, regional refinement (at ~30 km) is applied to our region of interest and upwind over the northeast Pacific. To better characterize internal variability, we conduct simulations with three ensemble members over 30 years of the historical period. In the Cascade Range, with some exceptions, winters with more atmospheric river days are associated with less snowpack. In California’s Sierra Nevada, winters with more ARs are associated with greater snowpack. The slope of the linear regression of observed snow water equivalent (SWE) on reanalysis-based AR count has the same sign as that arrived at using the model, but is statistically significant in observations only for California. In spring, internal variance plays an important role in determining whether atmospheric river days appear to be associated with greater or less snowpack. The cumulative (winter through spring) number of atmospheric river days, on the other hand, has a relationship with spring snowpack, which is consistent across ensemble members. Thus, the impact of atmospheric rivers on winter snowpack has a greater influence on spring snowpack than spring atmospheric rivers in the model for both regions and in California consistently in observations.


1991 ◽  
Vol 69 (11) ◽  
pp. 2434-2441 ◽  
Author(s):  
D. R. Vogler ◽  
B. B. Kinloch Jr. ◽  
F. W. Cobb Jr. ◽  
T. L. Popenuck

We conducted a population genetic study of the western gall rust fungus (Peridermium harknessii) using isozymes as genetic markers. Electrophoresis of 341 single-gall aeciospore isolates collected from several pine species revealed that western gall rust is comprised of two distinct zymodemes (multilocus electrophoretic types) in the western United States. Within zymodemes, all 15 loci studied were monomorphic (0.95 criterion), although variants were found at low frequencies (≤ 0.03) at 3 loci. Zymodeme I was characterized by single bands, indicating homozygosity at all loci; it consisted of isolates from all pine species and environments studied, including the Pacific Coast and Cascade Ranges and the Sierra Nevada and Rocky Mountains. Zymodeme II, which was absent from coastal forests, was characterized by double or triple bands at 6 of 15 loci. The additional bands were interpreted as products of alternative alleles in heterozygous condition; isozyme phenotypes at the other nine loci were identical to those of zymodeme I. Presumed heterozygotes were fixed within zymodeme II, and homozygotes of alleles unique to this zymodeme were not found. Generally, all isolates sampled from a forest stand were in the same zymodeme, and when isolates from both zymodemes were found in the same location, recombinant genotypes between zymodemes were not observed. Such extreme disequilibrium is inconsistent with sexual reproduction, indicating that P. harknessii is asexual. Key words: western gall rust, Pinus spp., genetic variation.


1976 ◽  
Vol 66 (5) ◽  
pp. 1609-1622 ◽  
Author(s):  
Zoltan A. Der ◽  
Thomas W. McElfresh

abstract Average Q values were determined for ray paths to various LRSM stations from the SALMON nuclear explosion by taking ratios of observed P-wave spectra to the estimated source spectrum. Most Q values for P-wave paths throughout eastern North America are in the range 1600 to 2000 while those crossing over into the western United States are typically around 400 to 500. These differences in Q for intermediate distances can sufficiently explain the differences in the teleseismic event magnitudes observed, 0.3 to 0.4 magnitude units, in the western versus the eastern United States, if one assumes that the low Q layer under the western United States is located at depths less than 200 km.


1993 ◽  
Vol 83 (4) ◽  
pp. 1064-1080 ◽  
Author(s):  
G. A. Bollinger ◽  
M. C. Chapman ◽  
M. S. Sibol

Abstract This study investigates the relationship between earthquake magnitude and the size of damage areas in the eastern and western United States. To quantify damage area as a function of moment magnitude (M), 149 MMI VI and VII areas for 109 earthquakes (88 in the western United States, 21 in the eastern United States and Canada) were measured. Regression of isoseismal areas versus M indicated that areas in the East were larger than those in the West, at both intensity levels, by an average 5 × in the M 4.5 to 7.5 range. In terms of radii for circles of equivalent area, these results indicate that damaging ground motion from shocks of the same magnitude extend 2 × the epicentral distance in eastern North America compared to the West. To determine source and site parameters consistent with the above results, response spectral levels for eastern North America were stochastically simulated and compared with response spectral ordinates derived from recorded strong ground motion data in the western United States. Stress-drop values of 200 bars, combined with a surficial 2-km-thick low velocity “sedimentary” layer over rock basement, produced results that are compatible with the intensity observations, i.e., similar response spectral levels in the east at approximately twice their epicentral distance in the western U.S. distance. These results suggest that ground motion modeling in eastern North America may need to incorporate source and site parameters different from those presently in general use. The results are also of importance to eastern U.S. hazard assessments as they require allowance for the larger damage areas in preparedness and mitigation programs.


1997 ◽  
Vol 129 (1) ◽  
pp. 93-104 ◽  
Author(s):  
Stewart B. Peck ◽  
Pedro Gnaspini

AbstractWe here give Echinocoleus new ranking as a subgenus of Ptomaphagus. Ptomaphagus (Echinocoleus) acutus sp.nov. is described from the southeastern United States (Alabama, Georgia, Florida). It is the most plesiotypic member of a group in which all other species live in the western United States and (probably) adjacent Mexico. All are myrmecophilous with Pogonomyrmex and Aphaenogaster (= Novomessor) harvester ants. A phylogenetic analysis is given for the subgenus. The main synapomorphies of Echinocoleus, which are mostly interrelated with myrmecophily, are reduction of body length and broadening of elytra, reduction of antennal length, verticalization of mesocoxal insertion, reduction of mesosternal carina, body with a golden pubescense, and a pointed projection at the end of the spermatheca.


The Auk ◽  
2005 ◽  
Vol 122 (4) ◽  
pp. 1070-1085 ◽  
Author(s):  
Jay D. Carlisle ◽  
Gregory S. Kaltenecker ◽  
David L. Swanson

Abstract Intraspecific patterns of autumn migration timing are not well known, particularly in the western United States. Here, we (1) describe autumn migration timing and age ratios of landbird migrants in southwestern Idaho, (2) examine differences in timing among age and sex classes, and (3) demonstrate how prebasic molt strategies affect migration timing differences between age classes. As a group, Neotropical migrants were most common from late July through early September, whereas temperate migrants were most common from mid-September into early October. Proportion of hatch-year birds was 74.5% for all migrants combined and ranged from 33.3% to 100% for individual species. Timing differences between sex classes were detected in only a few species and no general patterns emerged. In 22 of 31 Neotropical and temperate migrants examined, there were significant differences in timing between adults and hatch-year birds. In species in which adults begin fall migration before replacing flight feathers, adults migrated earlier than hatch-year birds. Conversely, in species in which adults molt flight feathers on or near the breeding grounds before departing on fall migration, hatch-year birds migrated earlier than adults in all but one case. Therefore, it appears that molt strategy is a powerful determinant of intraspecific migration timing differences and, to our knowledge, this is the first study to document this pattern among migrant passerines of North America. Estrategias de Muda y Diferencias en el Momento de Migración Otoñal en Migrantes Terrestres en el Suroeste de Idaho


1977 ◽  
Vol 109 (12) ◽  
pp. 1549-1554 ◽  
Author(s):  
Leonard A. Kelton

AbstractOrthops rubricatus (Fallén), a European species now known to occur in North America, is transferred to the genus Pinalitus Kelton. Pinalitus solivagus (Van Duzee) is reported from British Columbia, and P. utahensis Knight and P. brevirostris Knight are considered to be synonyms of it. Pinalitus rostratus n. sp. is described from Canada and western United States. Pinalitus californicus Knight is transferred to the genus Proba Distant. A key to species is provided.


Sign in / Sign up

Export Citation Format

Share Document